Полiт.ua Государственная сеть Государственные люди Войти
10 декабря 2018, понедельник, 16:19
Facebook Twitter VK.com Telegram

НОВОСТИ

СТАТЬИ

АВТОРЫ

ЛЕКЦИИ

PRO SCIENCE

СКОЛКОВО

РЕГИОНЫ

19 июля 2018, 09:41

«Искусственные звезды» для зоркости телескопов

Это изображение планеты Нептун получено во время тестирования адаптивно-оптического режима малого поля с приемником MUSE/GALACSI на Очень Большом Телескопе ESO
Это изображение планеты Нептун получено во время тестирования адаптивно-оптического режима малого поля с приемником MUSE/GALACSI на Очень Большом Телескопе ESO
ESO/P. Weilbacher (AIP)

Астрономы Европейской Южной обсерватории (ESO) провели первые наблюдения на Очень Большом Телескопе с использованием новой системы адаптивной оптики в режиме «лазерной томографии», сообщается в пресс-релизе ESO. Получены исключительно четкие тестовые изображения планеты Нептун, звездных скоплений и других объектов. Новая методика может использоваться для коррекции турбулентности на разных высотах в атмосфере. Стало возможно получать с земной поверхности в видимом диапазоне длин волн изображения с четкостью выше, чем у Космического телескопа Хаббла NASA/ESA.

Многоканальный спектрограф MUSE (Multi Unit Spectroscopic Explorer), установленный на Очень Большом Телескопе, работает в сочетании с блоком адаптивной оптики GALACSI. В нем используется четырехлазерное устройство формирования «искусственных звезд» 4LGSF (Laser Guide Stars Facility), в свою очередь входящее в состав системы адаптивной оптики AOF (Adaptive Optics Facility). AOF обеспечивает адаптивную оптическую коррекцию для приемников четвертого «юнита» -- Основного телескопа комплекса VLT (UT4). Спектрограф MUSE был первым инструментом, для которого была использована эта новая техника повышения качества изображений. Теперь он работает в двух адаптивно-оптических режимах: широкого (Wide Field Mode) и малого поля (Narrow Field Mode).

Сочетание в приемнике MUSE режима широкого поля с применением блока GALACSI в режиме приземного слоя дает коррекцию влияния атмосферной турбулентности на высотах до одного километра над телескопом в сравнительно широком поле  зрения. Однако новый режим малого поля с применением метода лазерной томографии корректирует почти всю атмосферную турбулентность над телескопом и позволяет получить гораздо более четкие изображения, хотя и в меньшей области неба. В режиме малого поля комплекса MUSE/GALACSI задается заранее определенный набор высот атмосферных слоев: 0 км (приземный слой, всегда вносящий значительный вклад в искажения), 3, 9 и 14 км. Затем алгоритм коррекции оптимизируется для этих слоев, чтобы позволить достичь качества изображения почти столь же высокого, как с настоящей опорной звездой, и в конечном счете реализовать максимальное теоретическое разрешение телескопа.

Новые усовершенствования позволяют 8-метровому телескопу UT4 достичь теоретического предела четкости (оптического разрешения). Атмосферные искажения изображений его больше не ограничивают. Этого уровня качества изображений исключительно трудно достичь в оптическом диапазоне. В результате на UT4 теперь можно получать изображения, сравнимые по четкости с теми, которые строятся Космическим телескопом Хаббла NASA/ESA. Новая оптическая техника позволит астрономам изучать с беспрецедентными подробностями такие необычные объекты, как сверхмассивные черные дыры в центрах удаленных галактик, джеты, выбрасываемые молодыми звездами, шаровые скопления, сверхновые, планеты и их спутники в Солнечной системе и многие другие.

Адаптивная оптика – метод компенсации размывающего оптические изображения звезд влияния земной атмосферы. Качество изображений, на которое оказывает влияние атмосферная турбулентность, обозначается термином «сиинг». Искажение изображений атмосферой – большая проблема, с которой всегда сталкиваются наблюдатели на наземных телескопах. Турбулентность воздуха в атмосфере, заставляющая звезды мерцать, когда мы видим их невооруженным глазом, приводит и к размыванию изображений космических объектов, получаемых на больших телескопах. Проходя сквозь атмосферу, свет звезд и галактик искажается и астрономам приходится использовать изощренные методы для искусственного улучшения качества изображений.

С этой целью на телескопе UT4 установлены четыре мощных лазера, каждый из которых посылает в небо 30-сантиметровой толщины столб интенсивного оранжевого света, возбуждающий в верхних слоях атмосферы атомы натрия, которые телескоп «видит» как лазерные «искусственные звезды». Системы адаптивной оптики используют свет, принимаемый ими от этих ярких “звезд”, чтобы определить параметры атмосферной турбулентности и по ним с частотой тысячу раз в секунду вычислить компенсирующие эту турбулентность деформации гибкого вторичного зеркала UT4.

Спектрограф MUSE – не единственный инструмент, в котором изображения корректируются системой адаптивной оптики AOF. Еще один компонент этой системыGRAAL, уже работает в сочетании с инфракрасной камерой HAWK-I, которую через несколько лет сменит новый мощный преемник ERIS. Эти значительные усовершенствования, вносимые адаптивной оптикой, увеличивают и без того большую оптическую мощь и эффективность флота телескопов ESO.

Новый режим наблюдений также представляет собой большой шаг вперед в создании Чрезвычайно Большого Телескопа ESO (ELT), которому метод лазерной томографии очень пригодится для достижения его научных целей. Результаты, полученные на UT4 с применением системы AOF, помогут инженерам и ученым, работающим над созданием крупнейшего в мире телескопа, оснастить 39-метровый гигант подобными адаптивно-оптическими устройствами.

Обсудите в соцсетях

Система Orphus
Loading...
Подпишитесь
чтобы вовремя узнавать о новых спектаклях и других мероприятиях ProScience театра!
3D Apple Big data Dragon Facebook Google GPS IBM MERS PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi автоматизация бизнеса Адыгея акустика Александр Лавров альтернативная энергетика «Ангара» антибиотики античность археология архитектура астероиды астрофизика аутизм Байконур бактерии бедность библиотеки биология биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера бозон Хиггса Византия викинги вирусы военная полиция Вольное историческое общество воспитание Вселенная вулканология гаджеты генетика география геология геофизика глобальное потепление гравитация грибы грипп дельфины демография демократия дети динозавры ДНК Древний Египет естественные и точные науки животные жизнь вне Земли Западная Африка защита диссертаций землетрясение змеи зоопарк зрение Иерусалим изобретения иммунология инновации интернет инфекции информационные технологии искусственный интеллект ислам историческая политика история история искусства история России история цивилизаций История человека. История институтов исчезающие языки карикатура картография католицизм квантовая физика квантовые технологии КГИ киты климатология комета кометы компаративистика компьютерная безопасность компьютерные технологии космический мусор космос криминалистика культура культурная антропология лазер Латинская Америка лексика лженаука лингвистика Луна мамонты Марс математика материаловедение МГУ медицина междисциплинарные исследования местное самоуправление метеориты микробиология Минобрнауки мифология млекопитающие мобильные приложения мозг моллюски Монголия музеи НАСА насекомые научный юмор неандертальцы нейробиология неолит Нобелевская премия НПО им.Лавочкина обезьяны обучение общество О.Г.И. одаренные дети онкология открытия палеолит палеонтология память папирусы паразиты педагогика планетология погода подготовка космонавтов популяризация науки право преподавание истории продолжительность жизни происхождение человека Протон-М психоанализ психология психофизиология птицы РадиоАстрон ракета растения РБК РВК РГГУ регионоведение религиоведение рептилии РКК «Энергия» робототехника Роскосмос Роспатент Россотрудничество русский язык рыбы Сергиев Посад сердце Сингапур сланцевая революция смертность СМИ Солнце сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры торнадо транспорт ураган урбанистика фармакология физика физиология физическая антропология финансовый рынок фольклор химия христианство Центр им.Хруничева черные дыры школа эволюция экология эмбриональное развитие эпидемии эпидемиология этнические конфликты этология Юпитер ядерная физика язык

Редакция

Электронная почта: politru.edit1@gmail.com
Адрес: 129090, г. Москва, Проспект Мира, дом 19, стр.1, пом.1, ком.5
Телефон: +7 495 980 1894.
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003г. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2014.