17 февраля 2020, понедельник, 07:13
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.Дзен

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

29 декабря 2017, 10:11

Ученые построили модель работы наношприца

Найденная соразмерность между внутренней и сжатой внешней белковыми нанотрубками увеличивает эффективность работы шприцеобразных наномашин
Найденная соразмерность между внутренней и сжатой внешней белковыми нанотрубками увеличивает эффективность работы шприцеобразных наномашин
Сергей Рошаль

Российские ученые из Южного федерального университета (ЮФУ) совместно с французскими коллегами построили модель, которая описывает принципы устройства и работы белковых шприцеобразных наномашин. Такие структуры широко распространены среди различных биологических объектов, в частности вирусов и некоторых бактерий. Полученные результаты будут полезны для разработки терапии инфекционных заболеваний, в экспериментах в области генной инженерии и биоинформатики. Работа выполнена при поддержке гранта Российского научного фонда (РНФ) и опубликована в высокорейтинговом журнале Nanoscale.

Люди всегда жили с наномашинами – сложными или простыми в устройстве системами размером менее десятимиллионной доли метра. Например, вирусами. Эти формы жизни не способны размножаться вне клетки-хозяина, в которую им необходимо как-то проникнуть. Миллионы лет эволюции привели к возникновению особых структур, помогающих вирусу поместить внутрь клетки свой генетический материал: ДНК или РНК. Наиболее успешным оказались шприцеобразные устройства из двух вставленных одна в другую трубок. При сокращении внешнего цилиндра внутренний протыкает мембрану, и по нему в клетку впрыскиваются информационные молекулы.

«Несмотря на то, что в общих чертах этот механизм известен уже несколько десятилетий, относительно точные данные о строении двух подобных систем, вируса бактерий бактериофага Т4 и белка пиоцина R2 – главного «вооружения» синегнойной палочки, получены лишь в последние пару лет. Бактериофаг T4 использует шприцеобразную наномашину для введения вирусной ДНК в свою жертву. Белки пиоцины R-типа, напротив, не впрыскивают какое-либо вещество в клетку, а разрушают ее, проделывая «дыру» в оболочке и нарушая электрохимическое равновесие. Мы построили простую модель на примере бактериофага T4 и пиоцина R2, объясняющую особенности устройства и работы шприцеобразных наномашин», – рассказывает профессор кафедры нанотехнологии физического факультета ЮФУ Сергей Рошаль. 

Две трубчатые органеллы наномашины: полая «шпага» и ее чехол – слаженно работают, обеспечивая успешное внедрение в клетку. При соприкосновении с поверхностью мембраны жертвы внешняя трубка, образованная слабо закрученными спиралями, претерпевает перестройку, сжимаясь и укорачиваясь. Одновременно с этим в игру включается спрятанная под внешней трубкой жесткая «шпага»: она обнажается и протыкает клетку. Сопутствующие этому механизму геометрические переходы связаны с наличием между трубками определенного соответствия в устройстве и размерах (соразмерности), впервые описанного авторами данной работы.

Любая работа требует затрат энергии, и все системы могут ее совершать лишь за счет своих внутренних «накоплений», потратить которые полностью нельзя. Этот принцип верен и для шприцеобразной наномашины. Наибольшей внутренней энергией обладает растянутое состояние чехла. Заключенная внутри «шпага» влияет на геометрию процесса сжатия, словно бы заставляя систему перейти в положение с минимальной энергией и совершить большую работу. По словам ученых, эта взаимосвязь была описана красивым в своей простоте соотношением между параметрами трубок (расстоянием и угловым сдвигом), изменяющимися при срабатывании наномашины. Появление соразмерности уменьшает как энергию взаимодействия самих шпаги и чехла, так и внутреннюю энергию системы. Полученный выигрыш позволяет увеличить силу, с которой «шпага» пробивает мембрану клетки, делая работу наномашины более эффективной.

«Исследование устройства и принципов функционирования шприцеобразной наномашины бактериофагов важно для антибактериальной терапии, особенно в случае развития у вредоносных микроорганизмов устойчивости к традиционным антибиотикам. Кроме того, бактериофаги являются перспективным вектором (наноконтейнером) для переноса участков ДНК в генной инженерии. Мы считаем, что обнаруженная нами закономерность устройства молекулярных наномашин может наблюдаться в других подобных, но пока еще мало изученных нанообъектах. Это, например, фагоподобные структуры, которые помогают морским животным ориентироваться в пространстве, шприцеобразные органеллы клетки и так далее. В любом случае знание о том, что трубки молекулярной наномашины могут стать соразмерными после ее срабатывания, позволит построить более точные структурные модели данных биологических систем», – заключает Сергей Рошаль.

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность археология архитектура астероиды астрофизика бактерии бедность библиотеки биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты климатология клонирование комары комета кометы компаративистика космос культура культурология лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция физическая антропология финансовый рынок черные дыры эволюция эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2020.