27 февраля 2020, четверг, 14:59
VK.comFacebookTwitterTelegramInstagramYouTubeЯндекс.Дзен

НОВОСТИ

СТАТЬИ

PRO SCIENCE

МЕДЛЕННОЕ ЧТЕНИЕ

ЛЕКЦИИ

АВТОРЫ

05 апреля 2018, 12:30

Фотополимеризация поможет напечатать 3D-структуры толщиной с волос

Полимерные 3D-структуры, полученные с помощью инфракрасного света
Полимерные 3D-структуры, полученные с помощью инфракрасного света
Источник: Кирилл Хайдуков (Иллюстрация из статьи Rocheva et al, 2018 / Scientific Reports)

Российские ученые разработали новую технологию создания 3D-объектов из фотополимеров с наночастицами. Твердые микроструктуры любой формы можно будет получить с помощью низкоинтенсивного инфракрасного света. Новая разработка может помочь в биомедицине, в области создания новых материалов и способов их конструирования для приложений 3D лазерного рисования, микрообработки, голографии, микро- и оптоэлектроники, формирования оптических элементов, записи и хранения данных. Исследования поддержаны грантами Российского научного фонда (РНФ). Полученные результаты опубликованы в журнале Scientific Reports, кратко о них сообщается в пресс-релизе РНФ.

В Федеральном научно-исследовательском центре «Кристаллография и фотоника» РАН при участии коллег из Института биоорганической химии имени М.М. Шемякина и Ю.А. Овчинникова РАН, Первого Московского государственного медицинского университета имени И.М. Сеченова и Московского технологического университета (МИТХТ) разработана новая технология, которая позволяет создавать объемные структуры за счет запуска реакции фотополимеризации низкоинтенсивным инфракрасным светом. Ученым удалось создать 3D структуры размером от нескольких сантиметров до нескольких микрометров (с толщину человеческого волоса).

Фотополимеризация – это облучение полимера ультрафиолетовым светом, то есть излучением с энергией большей, чем у видимого света, но меньшей, чем у рентгеновского излучения. Этот принцип многим знаком от стоматологов – эффект применяется при создании самых современных пломб, светополимерных. Новая технология позволяет создавать твердые структуры с помощью инфракрасного излучения. Добиться этого удалось с помощью специальных наночастиц, которые обладают уникальным свойством: поглощая несколько квантов света (фотонов) с более низкой энергией, они излучают один фотон с более высокой энергией. Этот эффект называется апконверсией и позволяет преобразовать инфракрасное излучение в излучение с более высокой энергией – ультрафиолетовое, а оно в свою очередь запускает процесс фотополимеризации.

Ученые создали такие наночастицы, причем, в отличие от предыдущих исследований, авторам удалось достигнуть очень высокой эффективности преобразования инфракрасного света в ультрафиолетовое излучение. Уникальные свойства полученных частиц позволили авторам работы впервые показать возможность создания 3D-структур заданной формы за счет эффекта апконверсии.

«На сегодняшний день лишь в нескольких пионерских работах демонстрировалась фотополимеризация через процесс апконверсии. Однако в этих исследованиях не была продемонстрирована возможность формирования 3D-структур, что необходимо для дальнейшей разработки и внедрения этой инновационной технологии», — рассказал Кирилл Хайдуков, один из авторов исследования, младший научный сотрудник Федерального научно-исследовательского центра «Кристаллография и фотоника» РАН.

Исследователи разработали экспериментальную установку для создания 3D-структур из полимера. Наночастицы с эффектом апконверсии помещали в жидкий полимер. На полученный раствор направили инфракрасный луч, которым можно управлять с помощью контролирующей системы зеркал. Направляя инфракрасный луч в нужную область, исследователи смогли создать структуру нужной формы. 

Исследователи надеются, что технологию можно будет применять во многих областях техники и промышленности. Новая разработка может помочь в области создания новых материалов и способов их конструирования для приложений 3D лазерного рисования, микрообработки, голографии, микро- и оптоэлектроники, формирования оптических элементов, записи и хранения данных. Помимо этого, инновационная методика, по мнению авторов, найдет применение и в медицине.

«В качестве одной из возможных областей применения, имеющих огромную социальную значимость, рассматриваются биомедицинские приложения, в частности тканевая инженерия, которая позволяет замещать повреждения органов и тканей с помощью различных полимерных материалов. Мы ожидаем, что предложенная нами технология позволить получать конструкции необходимого размера с требуемыми микро- и макро-характеристиками непосредственно в живых тканях для замещения повреждений», — добавил ученый.

Обсудите в соцсетях

«Ангара» Африка Византия Вселенная Гренландия ДНК Иерусалим КГИ Луна МГУ Марс Монголия НАСА РБК РВК РГГУ РадиоАстрон Роскосмос Роспатент Росприроднадзор Русал СМИ Сингапур Солнце Титан Юпитер акустика антибиотики античность археология архитектура астероиды астрофизика бактерии бедность библиотеки биомедицина биомеханика бионика биоразнообразие биотехнологии блогосфера вакцинация викинги вирусы воспитание вулканология гаджеты генетика география геология геофизика геохимия гравитация грибы дельфины демография демократия дети динозавры животные здоровье землетрясение змеи зоопарк зрение изобретения иммунология импорт инновации интернет инфекции ислам исламизм исследования история карикатура картография католицизм кельты кибернетика киты климатология клонирование комары комета кометы компаративистика космос культура культурология лазер лексика лженаука лингвистика льготы мамонты математика материаловедение медицина металлургия метеориты микробиология микроорганизмы мифология млекопитающие мозг моллюски музеи насекомые наука нацпроекты неандертальцы нейробиология неолит обезьяны общество онкология открытия палеолит палеонтология память папирусы паразиты перевод питание планетология погода политика право приматы природа психиатрия психоанализ психология психофизиология птицы ракета растения религиоведение рептилии робототехника рыбы сердце смертность собаки сон социология спутники старение старообрядцы стартапы статистика такси технологии тигры топливо торнадо транспорт ураган урбанистика фармакология физика физиология фольклор химия христианство цифровизация школа экология электрохимия эпидемии эпидемиология этология язык Александр Беглов Дмитрий Козак Древний Египет Западная Африка Латинская Америка НПО «Энергомаш» Нобелевская премия РКК «Энергия» Российская империя Сергиев Посад альтернативная энергетика аутизм биология бозон Хиггса вымирающие виды глобальное потепление грипп защита растений инвазивные виды информационные технологии искусственный интеллект история искусства история цивилизаций исчезающие языки квантовая физика квантовые технологии климатические изменения компьютерная безопасность компьютерные технологии космический мусор криминалистика культурная антропология междисциплинарные исследования местное самоуправление мобильные приложения научный юмор облачные технологии обучение одаренные дети педагогика персональные данные подготовка космонавтов преподавание истории продолжительность жизни происхождение человека русский язык сланцевая революция физическая антропология финансовый рынок черные дыры эволюция эмбриональное развитие этнические конфликты ядерная физика Вольное историческое общество жизнь вне Земли естественные и точные науки НПО им.Лавочкина Центр им.Хруничева История человека. История институтов дело Baring Vostok Протон-М 3D Apple Big data Dragon Facebook Google GPS IBM MERS PayPal PRO SCIENCE видео ProScience Театр SpaceX Tesla Motors Wi-Fi

Редакция

Электронная почта: polit@polit.ru
Телефон: +7 929 588 33 89
Яндекс.Метрика
Свидетельство о регистрации средства массовой информации
Эл. № 77-8425 от 1 декабря 2003 года. Выдано министерством
Российской Федерации по делам печати, телерадиовещания и
средств массовой информации. Выходит с 21 февраля 1998 года.
При любом использовании материалов веб-сайта ссылка на Полит.ру обязательна.
При перепечатке в Интернете обязательна гиперссылка polit.ru.
Все права защищены и охраняются законом.
© Полит.ру, 1998–2020.